

tel.: (+48 22) 825-04-71 (+48 22) 825-76-55 fax: (+48 22) 825-52-86

www.itb.pl





### **European Technical** Assessment

ETA-18/0186 of 29/03/2018

### **General Part**

**Technical Assessment Body issuing the European Technical Assessment** 

Trade name of the construction product

Product family to which the construction

product belongs

Manufacturer

**Manufacturing plants** 

**This European Technical Assessment** contains

This European Technical Assessment is issued in accordance with regulation (EU) No 305/2011, on the basis of

Instytut Techniki Budowlanej

SLP-H

Torque controlled expansion anchor of sizes M8, M10, M12, M16 and M20 for use in noncracked concrete

P.H. HAMAR Sp. J. B. i H. Grzesiak

ul. Hutnicza 7 81-061 Gdynia

Poland

Manufacturing Plant 2

Manufacturing Plant 3

11 pages including 3 Annexes which form an integral part of this Assessment

European Assessment Document (EAD) 330232-00-0601 "Mechanical fasteners for use in concrete"

This European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

### **Specific Part**

### 1 Technical description of the product

The SLP-H anchors in the sizes M8, M10, M12, M16 and M20 are the anchors made of steel which are placed into a drill hole and anchored by torque-controlled expansion.

An illustration and the description of the product are given in Annex A.

### 2 Specification of the intended use in accordance with the applicable European Assessment Document (EAD)

The performances given in Annex C are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The provisions made in this European Technical Assessment are based on an assumed working life of the anchor of 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer or Technical Assessment Body, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

### 3 Performance of the product and references to the methods used for its assessment

### 3.1 Performance of the product

### 3.1.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                   | Performance |
|------------------------------------------------------------|-------------|
| Characteristic resistance for tension loads, displacements | Annex C1    |
| Characteristic resistance for shear loads, displacements   | Annex C2    |

### 3.1.2 Safety in case of fire (BWR 2)

| Essential characteristic | Performance                               |
|--------------------------|-------------------------------------------|
| Reaction to fire         | Anchors satisfy requirements for Class A1 |
| Resistance to fire       | No performance assessed                   |

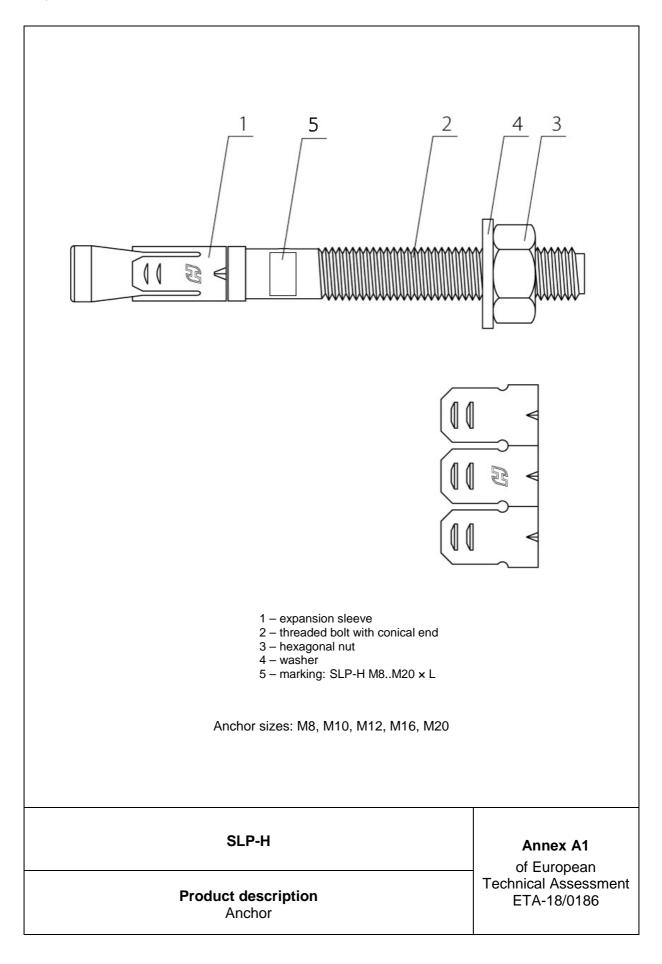
#### 3.2 Methods used for the assessment

The assessment of fitness of anchors for the declared intended use has been made in accordance with the EAD 330232-00-0601 "Mechanical fasteners for use in concrete".

### 4 Assessment and verification of constancy of performance (hereinafter AVCP) system applied, with reference to its legal base

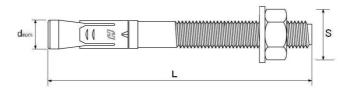
According to Decision 96/582/EC of the European Commission the system of assessment and verification of constancy of performance (see Annex V to Regulation (EU) No 305/2011) given in the following table applies.

| Product                           | Intended use                                                                                                                  | Level or class | System |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete | For fixing and/or supporting to concrete structural elements (which contributes to the stability of the works) or heavy units | _              | 1      |


## 5 Technical details necessary for the implementation of the AVCP system, as provided in the applicable European Assessment Document (EAD)

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited in Instytut Techniki Budowlanej.

For the type testing the results of the tests performed as part of the assessment for the European Technical Assessment shall be used unless there are changes in the production line or plant. In such cases the necessary type testing has to be agreed between Instytut Techniki Budowlanej and the notified body.


Issued in Warsaw on 29/03/2018 by Instytut Techniki Budowlanej

Anna Panek, MSc
Deputy Director of ITB



**Table A1: SLP-H anchor dimensions** 

|                 | Type of anchor   |                                         | d <sub>nom</sub> | L         | S    |
|-----------------|------------------|-----------------------------------------|------------------|-----------|------|
| Size            | Marking          | t <sub>fix</sub> <sup>(1)</sup><br>[mm] | [mm]             | [mm]      | [mm] |
| M8              | SLP-H-M8 x L     | 1 - 140                                 | 8                | 60 - 200  | 13   |
| M10             | SLP-H-M10 × L    | 1 - 150                                 | 10               | 75 - 235  | 17   |
| M12             | SLP-H-M12 × L    | 1 - 210                                 | 12               | 90 - 300  | 19   |
| M16             | SLP-H-M16 × L    | 1 - 190                                 | 16               | 100 - 300 | 24   |
| M20             | SLP-H-M20 × L    | 1 -170                                  | 20               | 130 - 300 | 30   |
| (1) – thickness | s of the fixture |                                         |                  |           |      |



**Table A2: Materials** 

| Designation      | Material                                                                    | Protection                        |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| Expansion sleeve | Carbon steel<br>HRC 28 (HV 285)                                             | Zinc plated ≥ 5 µm<br>EN ISO 4042 |  |  |  |  |  |
| Threaded bolt    | Cold-formed steel $f_{uk} \ge 680 \text{ MPa}$ $f_{yk} \ge 550 \text{ MPa}$ | Zinc plated ≥ 5 μm<br>EN ISO 4042 |  |  |  |  |  |
| Hexagonal nut    | Carbon steel property class 6 acc. to EN ISO 898-2                          | Zinc plated ≥ 5 µm<br>EN ISO 4042 |  |  |  |  |  |
| Washer           | ISO 7089 (DIN 125-A) or<br>ISO 7093 (DIN 9021)                              | Zinc plated ≥ 5 µm<br>EN ISO 4042 |  |  |  |  |  |

| SLP-H                                        | Annex A2                                           |
|----------------------------------------------|----------------------------------------------------|
| Product description Dimensions and materials | of European<br>Technical Assessment<br>ETA-18/0186 |

### Specification of intended use

### Anchorages subject to:

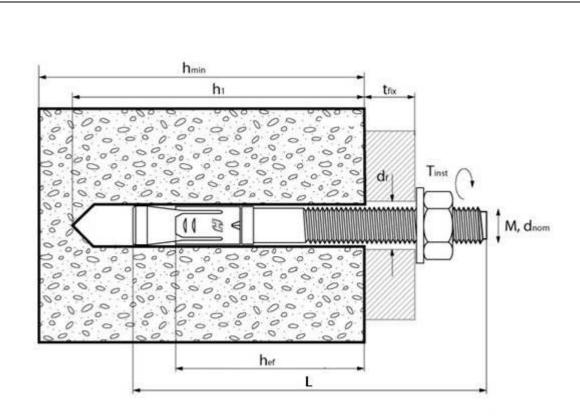
Static and quasi-static loads.

#### Base material:

- Reinforced or unreinforced normal weight concrete of strength classes C20/25 at minimum and C50/60 at maximum according to EN 206.
- Non-cracked concrete.

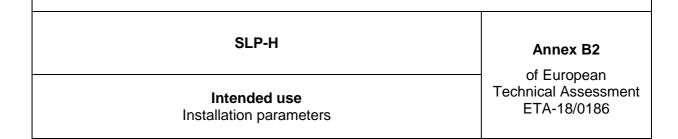
### Use conditions (environmental conditions):

Structures subject to dry internal conditions.


### Design:

- The anchorages under static loads and quasi-static loads are designed in accordance with Technical Report TR 055.
- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- The position of the anchor is indicated on the design drawings.
- Verifiable calculation notes and drawings are taking account of the loads to be transmitted.

#### Installation of anchors:


- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Use of the anchor only as supplied by the manufacturer without exchanging any component of the anchor.
- Anchor installation in accordance with the manufacturer's specification and drawings and using the appropriate tools.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the
  anchor is to be placed is in the range given and is not lower than that of the concrete to which
  the characteristic loads apply.
- Check of concrete being well compacted, e.g. without significant voids.
- Effective anchorage depth, edge distances and spacings not less than the specified values without minus tolerances.
- Positioning of the drill holes without damaging the reinforcement.
- Hole drilling by hammer drill.
- Cleaning of the hole of drilling dust.
- Application of the torque moment using a calibrated torque wrench.
- In case of aborted hole: new drilling at a minimum distance away of twice the depth of the aborted hole or smaller distance it the aborted drill hole is filled with high strength mortar and if under shear or oblique tension load if is not in the direction of load application.

| SLP-H                          | Annex B1                                           |
|--------------------------------|----------------------------------------------------|
| Intended use<br>Specifications | of European<br>Technical Assessment<br>ETA-18/0186 |



**Table B1: Installation parameters** 

| Anchor size                               | M8                    | M10  | M12   | M16   | M20   |       |
|-------------------------------------------|-----------------------|------|-------|-------|-------|-------|
| Effective anchorage depth                 | h <sub>ef</sub> [mm]  | 40   | 45    | 70    | 80    | 100   |
| Nominal diameter                          | $d_{nom} = [mm]$      | 8    | 10    | 12    | 16    | 20    |
| Cutting diameter of drill bit             | $d_{cut} = [mm]$      | 8,45 | 10,50 | 12,50 | 16,50 | 20,50 |
| Depth of drill hole                       | $h_1 \ge [mm]$        | 45   | 50    | 75    | 85    | 130   |
| Diameter of clearance hole in the fixture | d <sub>f</sub> ≤ [mm] | 9    | 12    | 14    | 18    | 20    |
| Installation torque                       | $T_{inst} = [Nm]$     | 20   | 30    | 50    | 120   | 180   |
| Minimum thickness of member               | h <sub>min</sub> [mm] | 100  | 120   | 150   | 170   | 200   |
| Minimum spacing                           | s <sub>min</sub> [mm] | 40   | 45    | 70    | 80    | 100   |
| Minimum edge distance                     | c <sub>min</sub> [mm] | 60,0 | 67,5  | 105,0 | 120,0 | 150,0 |



### Step 2 Step 1 0.0. 0 :00 000000 0000 000 0 0 0 00000 0.00 0000 Step 3 Step 4 0000 000 0.00 0000 000 .0 000 000 00 Step 5 0000 Tinst · c Step 1. Make a drill hole with a hammer drilling. 0000000 Step 2. Clean the drill hole with a brush and blow out. Step 3. Put the anchor into the drill hole. Step 4. Placing the fixture. 0 00 Step 5. Apply the required installation torque. .00

# SLP-H Annex B3 of European Technical Assessment ETA-18/0186

Table C1: Characteristic values for tension loads (static and quasi-static loading)

|                                         | Anchor size              |                                                  |      | M10  | M12  | M16   | M20   |
|-----------------------------------------|--------------------------|--------------------------------------------------|------|------|------|-------|-------|
| Steel failure                           |                          |                                                  |      |      |      |       |       |
| Characteristic resistance               |                          | $N_{Rk,s}[kN]$                                   | 24,9 | 39,4 | 57,3 | 106,8 | 166,6 |
| Partial safety fac                      | tor                      | γ <sub>Ms</sub> <sup>1)</sup>                    |      |      | 1,5  |       |       |
| Pull-out failure                        |                          |                                                  |      |      |      |       |       |
| Characteristic re in non-cracked of     |                          | $N_{Rk,p}[kN]$                                   | 7,5  | 9    | 25   | 35    | 50    |
| Installation safet                      | y factor                 | $\gamma_2^{(2)} = \gamma_{inst}^{(3)(4)}$        | 1,0  | 1,0  | 1,0  | 1,0   | 1,4   |
| concrete C30/37                         |                          |                                                  | 1,22 | 1,22 | 1,18 | 1,16  | 1,16  |
| Increasing factor                       | concrete C40/50          | Ψc                                               | 1,41 | 1,41 | 1,35 | 1,29  | 1,29  |
|                                         | concrete C50/60          | <del>_</del>                                     | 1,55 | 1,55 | 1,46 | 1,38  | 1,38  |
| Concrete cone                           | failure and splitting fa | ilure                                            |      |      |      |       |       |
| Effective anchor                        | age depth                | h <sub>ef</sub> [mm]                             | 40   | 45   | 70   | 80    | 100   |
| Factor for non-ci                       | rankad aanarata          | $k_1^{(2)} = k_{ucr}^{(3)}$                      | 10,1 | 10,1 | 10,1 | 10,1  | 10,1  |
| Factor for non-ci                       | acked concrete           | $k_1^{(2)} = k_{ucr,N}^{(4)}$                    | 11,0 | 11,0 | 11,0 | 11,0  | 11,0  |
| Installation safet                      | y factor                 | $\gamma_2^{(2)} = \gamma_{\text{inst}}^{(3)(4)}$ | 1,0  | 1,0  | 1,0  | 1,0   | 1,4   |
|                                         | concrete C30/37          |                                                  | 1,22 | 1,22 | 1,18 | 1,16  | 1,16  |
| Increasing factor                       | concrete C40/50          | Ψc                                               | 1,41 | 1,41 | 1,35 | 1,29  | 1,29  |
|                                         | concrete C50/60          | <del></del>                                      | 1,55 | 1,55 | 1,46 | 1,38  | 1,38  |
| Characteristic resistance for splitting |                          | $N_{Rk,sp}^{0}^{4}[kN]$                          | 7,5  | 9    | 25   | 35    | 50    |
| Characteristic                          | concrete cone failure    | s <sub>cr,N</sub> [mm]                           | 120  | 135  | 210  | 240   | 300   |
| spacing                                 | splitting failure        | s <sub>cr,sp</sub> [mm]                          | 120  | 135  | 210  | 240   | 300   |
| Characteristic                          | concrete cone failure    | c <sub>cr,N</sub> [mm]                           | 60   | 67,5 | 105  | 120   | 150   |
| edge distance                           | splitting failure        | c <sub>cr,sp</sub> [mm]                          | 60   | 67,5 | 105  | 120   | 150   |

<sup>1)</sup> in absence of other national regulations

Table C2: Displacements under tension loads

| Anchor size  |                                         | М8   | M10  | M12   | M16   | M20   |
|--------------|-----------------------------------------|------|------|-------|-------|-------|
| Tension load | N [kN]                                  | 4,00 | 5,45 | 13,79 | 19,52 | 27,06 |
| Displacement | $\delta_{\text{ N0}}\text{[mm]}$        | 0,53 | 1,35 | 1,79  | 1,80  | 3,83  |
|              | $\delta_{\text{N}_{\infty}}[\text{mm}]$ | 0,62 | 0,62 | 0,62  | 0,62  | 0,62  |

SLP-H

Performances
Characteristic values for tension loads, displacements

Annex C1
of European
Technical Assessment
ETA-18/0186

<sup>&</sup>lt;sup>2)</sup> parameter for design according to ETAG-001 Annex C

<sup>&</sup>lt;sup>3)</sup> parameter for design according to CEN/TS 1992-4-4:2009

<sup>&</sup>lt;sup>4)</sup> parameter for design according to prEN 1992-4:2016

Table C3: Characteristic values for shear loads (static and quasi-static loading)

| Anchor size                                    | )                                    | М8   | M10  | M12  | M16   | M20   |
|------------------------------------------------|--------------------------------------|------|------|------|-------|-------|
| Steel failure without lever a                  | rm                                   |      |      |      |       |       |
| Characteristic resistance                      | $V_{Rk,s}^{2)3)} = V_{Rk,s}^{0}[kN]$ | 12,4 | 19,7 | 28,7 | 53,4  | 84,3  |
| Ductility factor                               | $k^{2)} = k_2^{3)} = k_7^{4)}$       | 0,8  | 0,8  | 0,8  | 0,8   | 0,8   |
| Partial safety factor                          | γ <sub>Ms</sub> <sup>1)</sup>        | 1,5  | 1,5  | 1,5  | 1,8   | 1,5   |
| Steel failure with lever arm                   |                                      | •    | •    |      | •     | •     |
| Characteristic bending resistance              | M <sup>0</sup> <sub>Rk,s</sub> [Nm]  | 25,5 | 50,8 | 89,1 | 226,5 | 441,9 |
| Partial safety factor                          | γ <sub>Ms</sub> <sup>(1)</sup>       |      |      | 1,25 |       |       |
| Concrete pry-out failure                       |                                      |      |      |      |       |       |
| Factor                                         | $k^{2)} = k_3^{3)} = k_8^{4)}$       | 1,0  | 1,0  | 1,0  | 2,0   | 2,0   |
| Partial safety factor                          | γ <sub>Ms</sub> <sup>1)</sup>        | 1,5  | 1,5  | 1,5  | 1,8   | 1,5   |
| Concrete edge failure                          |                                      |      |      |      |       |       |
| Effective length of anchor under shear loading | I <sub>f</sub> [mm]                  | 40   | 45   | 70   | 80    | 100   |
| Outside diameter of anchor                     | d <sub>nom</sub> [mm]                | 8    | 10   | 12   | 16    | 20    |
| Partial safety factor                          | γ <sub>Mc</sub> <sup>1)</sup>        | 1,5  | 1,5  | 1,5  | 1,5   | 2,1   |

Table C4: Displacements under shear loads

| Anchor size  | )                                  | М8   | M10   | M12   | M16   | M20   |
|--------------|------------------------------------|------|-------|-------|-------|-------|
| Shear load   | V [kN]                             | 9,84 | 16,50 | 20,90 | 37,87 | 56,05 |
| Displacement | $\delta_{\text{ V0}}  [\text{mm}]$ | 0,74 | 2,07  | 2,21  | 2,35  | 3,99  |
|              | $\delta_{\text{V}_{\infty}}$ [mm]  | 3,10 | 3,10  | 3,10  | 3,10  | 3,10  |

| SLP-H                                                             | Annex C2                                           |
|-------------------------------------------------------------------|----------------------------------------------------|
| Performances Characteristic values for shear loads, displacements | of European<br>Technical Assessment<br>ETA-18/0186 |

<sup>1)</sup> in absence of other national regulations
2) parameter for design according to ETAG-001 Annex C
3) parameter for design according to CEN/TS 1992-4-4:2009
4) parameter for design according to FprEN 1992-4:2016